6 research outputs found

    Bacterial diversity in the intestinal tract of the funguscultivating termite Macrotermes michaelseni (Sjöstedt)

    Get PDF
    Microorganisms in the intestinal tracts of termites play a crucial role in the nutritional physiology of termites. The bacterial diversity in the fungus-cultivating Macrotermes michaelseni was examined usingboth molecular and culture dependent methods. Total DNA was extracted from the gut of the termite and 16S rRNA genes were amplified using bacterial specific primers. Representatives from forty-one (41) RFLP patterns from a total of one hundred and two (102) clones were sequenced. Most of the clones were affiliated with 3 main groups of the domain Bacteria: Cytophaga-Flexibacter-Bacteriodes(73), Proteobacteria (13), and the low G+C content Gram-positive bacteria (9). Two RFLPs related to planctomycetes, but deeper branching than known members of the phylum, were detected. In addition, 1 and 2 RFLPs represented the spirochetes and TM7-OP11 groups, respectively. In studies using culture dependent techniques, most of the isolates obtained belonged to the Gram-positive bacteriawith a high G+C content. However, only one of the clones represented Gram-positive bacteria with High G+C content. These results show a high bacterial diversity in the intestinal microbiota of M. michaelseni, which continues to escape cultivation. As is the case in other termites many of the clones represent previously uncultured bacteria. The fact that most of the clones clustered with clones from Macrotermes gilvus provides further support for the hypothesis that microorganisms in intestinal tracts of termites have co-evolved with their hosts

    INTERGROWTH-21st Gestational Dating and Fetal and Newborn Growth Standards in Peri-Urban Nairobi, Kenya: Quasi-Experimental Implementation Study Protocol.

    Get PDF
    BACKGROUND: The burden of preterm birth, fetal growth impairment, and associated neonatal deaths disproportionately falls on low- and middle-income countries where modern obstetric tools are not available to date pregnancies and monitor fetal growth accurately. The INTERGROWTH-21st gestational dating, fetal growth monitoring, and newborn size at birth standards make this possible. OBJECTIVE: To scale up the INTERGROWTH-21st standards, it is essential to assess the feasibility and acceptability of their implementation and their effect on clinical decision-making in a low-resource clinical setting. METHODS: This study protocol describes a pre-post, quasi-experimental implementation study of the standards at Jacaranda Health, a maternity hospital in peri-urban Nairobi, Kenya. All women with viable fetuses receiving antenatal and delivery services, their resulting newborns, and the clinicians caring for them from March 2016 to March 2018 are included. The study comprises a 12-month preimplementation phase, a 12-month implementation phase, and a 5-month post-implementation phase to be completed in August 2018. Quantitative clinical and qualitative data collected during the preimplementation and implementation phases will be assessed. A clinician survey was administered eight months into the implementation phase, month 20 of the study. Implementation outcomes include quantitative and qualitative analyses of feasibility, acceptability, adoption, appropriateness, fidelity, and penetration of the standards. Clinical outcomes include appropriateness of referral and effect of the standards on clinical care and decision-making. Descriptive analyses will be conducted, and comparisons will be made between pre- and postimplementation outcomes. Qualitative data will be analyzed using thematic coding and compared across time. The study was approved by the Amref Ethics and Scientific Review Committee (Kenya) and the Harvard University Institutional Review Board. Study results will be shared with stakeholders through conferences, seminars, publications, and knowledge management platforms. RESULTS: From October 2016 to February 2017, over 90% of all full-time Jacaranda clinicians (26/28) received at least one of the three aspects of the INTERGROWTH-21st training: gestational dating ultrasound, fetal growth monitoring ultrasound, and neonatal anthropometry standards. Following the training, implementation and evaluation of the standards in Jacaranda Health's clinical workflow will take place from March 2017 through March 5, 2018. Data analysis will be finalized, and results will be shared by August 2018. CONCLUSIONS: The findings of this study will have major implications on the national and global scale up of the INTERGROWTH-21st standards and on the process of scaling up global standards in general, particularly in limited-resource settings. REGISTERED REPORT IDENTIFIER: RR1-10.2196/10293
    corecore